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Abstract

This paper presents a unified model to study the effect of both locally and non-locally reacting liners on the sound

radiation generated by fan blade rotating sources. This model is set up by the following steps. First, the spinning mode

eigenfunction expansions are used to obtain the solution of sound field inside the duct, while the effect of duct liner is

modeled by distributed monopole sources, thus effectively avoiding the solution of a difficult complex eigenvalue problem.

Secondly, in order to avoid the estimation of the generalized impedances at the inlet and exhaust planes, a boundary

element method is used to give the solution outside the duct. With the suitable boundary conditions imposed on the inlet

and exhaust planes, a matrix equation is obtained, and the relevant numerical calculation shows this model can not only

give a good agreement with existing results for locally reacting liner but also has a capability to predict the sound radiation

from fan rotating blade sources with an arbitrary combination of locally and non-locally reacting liners.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic treatment in aeroengine nacelle is an essential part of the overall aircraft noise reduction effort.
Especially with the increase of bypass ratio of civil transport turbofans, the contribution of fan to the overall
noise will be further enhanced [1]. Therefore, the optimization of acoustic treatment and its passive/active
control have become a serious concern of aeroacoustician. In fact, considerable work has been done for the
prediction of the sound radiation from a lined duct over the last decade, including the boundary integral
method or boundary element methods [2,3], the finite element methods [4,5] and the numerical simulation
method based on CAA technique [6–9]. It is noted that these methods are playing a diverse role in the different
stage of the acoustic design. For the determination of final design parameters, it is necessary to use the
numerical simulation tools as accurate as possible to check the results provided the relevant computing cost is
affordable. However, for the purpose of preliminary design considerations, an acoustic engineer must conduct
a large number of parametric studies. In this situation, the boundary integral methods [2,3] have in fact
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

c0 sound speed
fs(x, y) duct cross-section
G Green’s function in the duct fs(x, y)
G0 Green’s function in the cavity
ht thickness of perforated screen
Jm Bessel function of the first kind of order

m

J0m first derivative of Jm

k0 wavenumber
km,n radial wavenumber of mode (m, n)
m spinning mode order
M Mach number of uniform flow
p acoustic pressure
p0 mean pressure
pd disturbance acoustic pressure in a duct

with locally reacting liners
pd

+ disturbance acoustic pressure in the liner
cavity

pd
� disturbance acoustic pressure in a duct

with non-locally reacting liners
pi acoustic pressure of incident sound wave
r0 radius of duct

rs radial coordinate of spinning point di-
poles

~r vector coordinate
~r0 vector coordinate denotes the mass

source singularities
r, j, z cylindrical coordinates
sð~rÞ duct wall surface
T thrust of spinning point dipoles
x, y, z orthogonal coordinates
Z specific admittance ratio
a source term
djk

1 ðj ¼ kÞ

0 ðjakÞ

(
f eigenfunction of a solid circular duct
F eigenfunction of a solid duct
gm,n

7 axial wavenumber of mode (m, n)
Z compliance of perforated screen
m, n radial mode order
r acoustic density
r0 mean density
t time associated with emission of sound

wave; time delay
o angular frequency
x amplitude of the particle displacement

X. Sun et al. / Journal of Sound and Vibration 316 (2008) 50–68 51
become one of the fast, useful and reliable tools. In addition, this method has also been extended to study the
optimization design of acoustic treatments [10] and the active control technique [11]. Therefore, any further
development for this kind of method may still be required for the practical application point of view.

In the development of the boundary integral methods, Myers and Kosanchik III [3] presented a model to
predict the sound radiation with the effect of both rotating source and lined duct based on solving the
linearized Ffcowcs Williams–Hawkings equation. An alternative method was suggested by Dunn et al. [2]
using potential theory. In particular, the latter includes the capability of handling arbitrary liner distributions
inside the duct, and it is thus more suitable for the optimizing design of multi-segmented liners. On the other
hand, it is suggested that future acoustic liners may consist of hybrid active–passive elements in many current
investigations, which possess not only the advantages of a conventional liner but also the capability to adjust
the acoustic impedance of liner to adapt to the changing aeroengine environment. It is also noted that non-
locally reacting liner has more design degrees of freedom than locally reacting liner, which has generally two
degrees of freedom, i.e. the liner thickness (cavity depth) and the resistance of the perforated plate. It is thus
believed that non-locally reacting liner may play an important role in the future noise suppressor design of
turbofans. Especially, a kind of non-locally reacting liner with the adjustable wall impedance using bias flow
has long been receiving great attention with the emphasis on both the mechanism related to sound absorption
and possible applications [12–22]. However, for a non-locally reacting liner, the effect of the liner cannot be
described as the impedance boundary condition anymore because acoustic waves in the liner also propagate
parallel to the wall. Therefore, any effective description for this situation must contain simultaneously the
solution of the acoustic fields both inside and outside the liner. It is obvious that the existing boundary integral
method will not be suitable for this problem. Naturally, if aiming at the parametric study of future advanced
liner, it is necessary to develop a model to include the effect of both locally and non-locally reacting liners on
the prediction of sound radiation from ducted rotating blade sources.
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In this investigation, we present a unified model to study the effect of both locally and non-locally reacting liners
on the sound radiation. This model is set up by the following three steps. First, we still use the spinning mode
eigenfunction expansions to obtain the solution of sound field inside the duct [23,24], while the effect of duct liner is
modeled by monopole sources suggested by Namba and Fukushige [25], which effectively avoids the solution of a
difficult complex eigenvalue problem. In particular, the singularity treatment in the Namba’s method has been
replaced by a novel approach, which suggests to study a new kind of noise suppressor related to membrane
vibration by Huang [26]. In addition, after describing the acoustic field inside the liner using Green’s function
theory, the present model can also be extended to handle the non-locally reacting liner. Secondly, considering the
eigenfunctions still meet the orthogonal condition in our case, we construct a solution for a given lined duct
element with arbitrarily axial length and position, which has the interface parameters as unknown variables. For
this particular process, we have in fact extended the solution for an infinitely long duct with finite acoustic
treatment length to that for a finite length duct element without calculating the complex eigenvalues for the
softwall. It is found that it is particularly useful to construct such an element solution so that to make full use of
the existing mode-match technique [24]. Thirdly, in order to avoid the estimation of the generalized impedances at
the inlet and exhaust planes [27,28], a boundary element method is suggested to give the solution outside the duct
[29–31]. With the suitable boundary conditions imposed on the inlet and exhaust planes, we can obtain a matrix
equation which includes the unknown variables both inside and outside the acoustic fields.

In the following sections, we will first describe the theoretical details mentioned as above for this model, and
then introduce how to construct various transfer elements for both locally and non-locally reacting liners.
Especially, emphasis is also placed on how to match the solution inside the duct with the acoustic field outside
the duct through the boundary element method, which naturally results in a matrix equation. Finally, various
examples are presented to check if the results are correct or not. In fact, for locally reacting liners the present
model gives a good agreement with the existing results. On the other hand, it is noted that this model also
provides some interesting results for non-locally reacting liners. In particular, we have shown the possibility of
controlling the sound propagation in a lined duct with bias flow.

2. Analytical model

2.1. Basic solution for a finite domain in ducts with locally reacting liner

As shown in Fig. 1, a duct of arbitrary uniform cross-section is considered here, in which a uniform mean
flow is contained. Now, we discuss how to solve the acoustic field in a domain from z ¼ 0 to l with an
impedance wall. By applying the Green’s function theory, Zorumski [24] verified that the solution in the
domain could be written in the form of

pm ¼
XN

n¼1

½BnFðkm;nrÞeig
�
m;nz þ CnFðkm;nrÞeig

þ
m;nðz�lÞ�, (1)
Fig. 1. Geometry of an infinite duct with arbitrary cross-section.
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where m and n represent the circumferential and radial mode number, respectively, while km,n is the
radial eigenvalue obtained by satisfying the impedance boundary condition. It is noted that a close
matrix equation with modal coefficient Bn and Cn as unknown variables can be obtained by imposing
the mass and momentum conservations on the interfaces. This work was called ‘‘mode-matching method’’,
which was widely applied to the optimizing design for multi-segmented liners. However, as we have
mentioned in the Introduction, the difficulty arising from the eigenvalue computation limits its further
application. In addition, for a flow duct, it can be verified that the eigenfunction F(km,nr) does not
satisfy the orthogonality anymore [24], which may also affect the accuracy and convergence of the computing
results.

In order to overcome these difficulties, Namba and Fukushige [25] showed that the effect of a liner could be
modeled as monopoles with unknown source strength, which naturally avoids the calculation of complex
eigenvalues. In fact, the numerical results from this model reveal an excellent agreement with those obtained
by using Wiener–Hopf technique [32]. However, this model only remains valid for an infinitely long
rectangular duct and needs to handle various singularities appeared in the integral equation. Therefore, in
order to form the solution similar to Eq. (1), the key to the problem lies in how to solve the integral equation
for a finite domain by making use of the same basic assumptions suggested in Ref. [25]. For this reason, we are
trying to construct the solution by the following steps.

Now, we define the cross-section of the duct as fs(x, y) ¼ 0. The mean flow is assumed to be with pressure p0,
density r0, speed of sound c0, and Mach number M. The wall of the duct is lined with a locally reacting
acoustic liner of specific acoustic impedance Z. Incident sound source is assumed to be located at z ¼ �N.
Positive or negative Mach number M(Mo1) means downstream or upstream propagation of uniform flow,
respectively. Assuming the effects of viscosity and heat transfer negligible, we have

1

c20

D2
0p

Dt2
� r2p ¼ að~r0; tÞ, (2)

where D0=Dt ¼ ðq=qtÞ þUðq=qzÞ, U ¼Mc0, að~r
0; tÞ represents the source term. To solve the sound field in the

duct, the acoustic pressure p in the domain can be regarded as a sum of an undisturbed incident acoustic
pressure component pi and a disturbance pressure component pd, i.e.

p ¼ pi þ pd . (3)

The incident acoustic pressure pi is defined as the pressure that would be realized if the wall of the duct is
entirely hard. Then pi must satisfy the wall boundary condition

qpi

qn
¼ 0 for ~r on f sðx; yÞ ¼ 0. (4)

For simplicity, in most of the computational models, the incident acoustic wave pi are usually treated as a
single mode coming from one direction, which interacts directly with the scattering object. However,
superposition principle for a liner system states that a linear combination of solutions to a linear equation is
again a solution of the liner system, so, we can directly consider the incident waves interacting with the liner
shown in Fig. 1 with the following expression:

pi ¼ pB þ pC ¼
XN

m¼1

½BmFm;mðx; yÞ e
ig�m;mz þ CmFm;mðx; yÞ e

igþm;mðz�lÞ�, (5)

where

g�m;m ¼

Mk0

b2
þ

km;m
b2

for upstream;

Mk0

b2
�

km;m
b2

for downstream;

8>>><
>>>: (6)
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km;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0 � b2k2

m;m

q
k2
04b2k2

m;m;

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2k2

m;m � k2
0

q
k2
0ob2k2

m;m;

8><
>: (7)

b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
; k0 ¼ o=c0, (8)

where km,m denotes the eigenvalue with the condition of solid wall. On the other hand, for a monopole source,
we can apply the Generalized Green’s function method [33] to obtain its solution in the form of

~pdð~r; tÞ ¼ �

Z T

�T

Z
sðtÞ

r0 ~V
0
n

D0G

Dt
dsð~r0Þdt, (9)

where ~V
0

n is the velocity normal to the liner surface, while Green’s function can be expressed as

G ¼
�i

4p

X1
m¼�1

X1
m¼1

Fm;mðx; yÞF�m;mðx
0; y0Þ

Gm;m

Z 1
�1

1

km;m
eioðt�tÞþig

�
m;mðz�z0Þ do: (10)

Substituting Eq. (10) into Eq. (9) yields

~pd ¼ pd e
iot ¼

r0 e
iot

2

X1
m¼�1

X1
m¼1

Fm;mðx; yÞ

Gm;m

Z
sðtÞ

V 0nF
�
m;mðx

0; y0Þ
½oþUg�m;m�

km;m
eig
�
m;mðz�z0Þ dsð~r0Þ, (11)

where Z
A

FmF�n dxdy ¼
0 ðmanÞ;

Gn ðm ¼ nÞ:

(
(12)

At the surface of the liner, pi, pd and Z must satisfy the boundary condition

p

�Vn

¼ Z, (13)

due to Eq. (3), it can be rewritten as

pd þ ZVn ¼ �pi, (14)

where Vn is acoustic particle velocity, by the application of displacement continuity condition, V0n can be
expressed as

V 0n ¼
qx
qt
þU

qx
qz0
¼ Vn þ

U

io
qVn

qz0
. (15)

Eq. (14) is actually an integral equation with unknown sources strength related to Vn. The solution of this
equation generally needs to handle various singularities as introduced in Goldstein and Namba’s works
[25,33]. In order to avoid this difficulty, we can manipulate Eq. (14) in a different way [26], letting Vn be
expanded into the form

V n ¼
X1
k¼1

V kðx
0; y0Þ sin

kpz0

l
. (16)

Substituting Eq. (16) into Eq. (15), we thus have

V 0n ¼ 1þ
U

io
q
qz0

� �
Vn ¼ 1þ

U

io
q
qz0

� �X1
k¼1

V k sin
kpz0

l
. (17)

The Fourier sine transform of Eq. (14) in the region 0ozol is

2

l

Z l

0

pd sin
jpz

l
dzþ

2

l

Z l

0

ZV n sin
jpz

l
dz ¼ �

2

l

Z l

0

pi sin
jpz

l
dz. (18)
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Substituting Eqs. (16) and (17) into Eq. (11) and then taking Fourier sine transforming of Eq. (11) in the
region 0ozol, it is verified that

2

l

Z l

0

pd sin
jpz

l
dz ¼

X1
k¼1

zjkV k; j ¼ 1; 2; 3; . . . , (19)

where

zjk ¼
r0
l

X1
m¼�1

X1
n¼1

Fm;nðx; yÞ

Gm;n

�

Z l

0

Z
sðtÞ

½oþUg�m;n�

kn;m
F�m;nðx

0; y0Þ eig
�
mnðz�z0Þ 1þ

U

io
q
qz0

� �
sin

kpz0

l
ds ~r0
� �

sin
jpz

l
dz. (20)

Then Eq. (14) can be rewritten asX1
k¼1

ðzjk þ djkZÞVk ¼ �I j ; j ¼ 1; 2; 3; . . . , (21)

where

I j ¼
2

l

Z l

0

XN

m¼1

½BmFm;mðx; yÞ e
ig�m;mðzÞ þ CmFm;mðx; yÞ e

igþm;mðz�lÞ� sin
jpz

l
dz

¼
XN

m¼1

Fm;mðx; yÞ½BmI
Bm
j þ CmI

Cm
j �. (22)

For circumferential mode m, using mode-matching condition yields

Vk ¼
X

j

ðzjk þ djkZÞ�1I j ¼
X

j

I�1jk I j. (23)

As we have seen, Ij contains unknown coefficients Bm and Cm. According to superposition principle of linear
waves and Eqs. (11), (17), (22) and (23), the scattering field can be expressed as

pd ¼
XN

n¼1

pdnFm;nðx; yÞ ¼
r0
2

XN

n¼1

Fm;nðx; yÞ e
ig�m;nz

Gm;n

X1
m¼1

BmQ
Bm
n� þ CmQ

Cm
n�

h i( )
, (24)

where

Q
Bm
n� ¼

XM0

k¼1

X
j

I�1jk;m;Bm
I

Bm
j Sn�

k Fm;mðx; yÞ; Q
Cm
n� ¼

XM0

k¼1

X
j

I�1jk;m;Cm
I

Cm
j Sn�

k Fm;mðx; yÞ f sðx; yÞ ¼ 0,

Sn�
k ¼

Z
s

F�m;nðx
0; y0Þ
½oþUg�m;n�

kn;m
e�ig

�
m;nz0 1þ

U

io
q
qz0

� �
sin

kpz0

l
dsð~r0Þ. (25)

As a specific example, we can use the present method to construct a close matrix equation to obtain the
solution for an infinitely long duct described in Fig. 1. In fact, with the interface z ¼ 0 or l as a relative
coordinate, the sound propagation in a different direction can be described as

pA ¼
XN

n¼1

AnFm;nðx; yÞ e
ig�m;nz, (26)

pB ¼
XN

n¼1

BnFm;nðx; yÞ e
ig�m;nz, (27)

pC ¼
XN

n¼1

CnFm;nðx; yÞ e
igþm;nðz�lÞ, (28)
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pD ¼
XN

n¼1

DnFm;nðx; yÞ e
ig�m;nðz�lÞ, (29)

pE ¼
XN

n¼1

EnFm;nðx; yÞ e
igþm;nz. (30)

All these waves are composed of modal components that can be specified by the notation (m, n). In addition,
the known source pA is assumed to locate at z ¼ �N, and only the cut-on modes are considered. On the other
hand, once the unknown coefficients Bn, Cn, Dn, En (n ¼ 1, 2, 3,y,N) are determined, the corresponding
acoustic field in the duct can be obtained through Eqs. (26)–(30). To illustrate how to solve the coefficients, an
infinite circular duct with uniform cross-section model is considered here, i.e., Fm;nðx; yÞ ¼ fmðkm;nrÞ eimj. Eqs.
(24) and (26–30) imply that, to describe the sound field in the duct, 4N unknown coefficients (Bn, Cn, Dn, En)
have to be determined. According to the pressure and axial velocity continuity conditions on the cross-section
b�b and c�c, we have

p�b ¼ pþb ; v�bz ¼ vþbz

p�c ¼ pþc ; v�cz ¼ vþcz. (31)

Substituting Eqs. (24)–(30) into Eq. (31) yieldsX
n

Enfmðkm;nrÞ þ
X

n

Anfmðkm;nrÞ ¼
X

n

ðBn þ Cn e
�igþm;nlÞfmðkm;nrÞ þ

X
n

pdnfmðkm;nrÞ,

X
n

Engþm;nfmðkm;nrÞ

oþUgþm;n
þ
X

n

Ang�m;nfmðkm;nrÞ

oþUg�m;n

¼
X

n

Bng�m;n
oþUg�m;n

þ
Cngþm;n e

�igþm;nl

oþUgþm;n

 !
fmðkm;nrÞ þ

X
n

gþm;npdnfmðkm;nrÞ

oþUgþm;n
,X

n

ðBn e
ig�m;nl þ CnÞfmðkm;nrÞ þ

X
n

pdn e
ig�m;nlfmðkm;nrÞ ¼

X
n

Dnfmðkm;nrÞ,

X
n

g�m;nBn e
ig�mnl

oþUg�m;n
þ

Cngþm;n
oþUgþm;n

 !
fmðkm;nrÞ þ

X
n

pdng
�
m;n e

ig�m;nl

oþUg�m;n
fmðkm;nrÞ

¼
X

n

Dng�m;nfmðkm;nrÞ

oþUg�m;n
; n ¼ 1; 2; 3; . . . ;N. (32)

Since the eigenfunction fm satisfy orthogonality, the simultaneous algebraic equations can be written as

En � Bn � Cn e
�igþm;nl � pdn ¼ �An

gþm;n
oþUgþm;n

En �
g�m;n

oþUg�m;n
Bn �

gþm;n e
�igþm;nl

oþUgþm;n
Cn �

gþm;n
oþUgþm;n

pdn ¼ �
g�m;n

oþUg�m;n
An

Bne
ig�m;nl þ Cn þ pdne

ig�m;nl �Dn ¼ 0

g�m;n e
ig�m;nl

oþUg�m;n
Bn þ

gþm;n
oþUgþm;n

Cn þ
g�m;n e

ig�m;nl

oþUg�m;n
pdn �

g�m;n
oþUg�m;n

Dn ¼ 0; n ¼ 1; 2; 3; . . . ;N:

8>>>>>>>>>><
>>>>>>>>>>:

(33)

Obviously the coefficients Bn, Cn, Dn, En can be determined by solving algebraic Eq. (33). For brevity, Eq. (33)
can be simplified as

ss1E ss1B ss1C 0

ss2E ss2B ss2C 0

0 ss3B ss3C ss3D

0 ss4B ss4C ss4D

8>>>><
>>>>:

9>>>>=
>>>>;

pE

pB

pC

pD

0
BBBB@

1
CCCCA ¼

pA

vA

0

0

8>>><
>>>:

9>>>=
>>>;, (34)



ARTICLE IN PRESS
X. Sun et al. / Journal of Sound and Vibration 316 (2008) 50–68 57
where each ss denotes a coefficients matrix, for example:

ss1B ¼

�1 0 � � � 0

0 �1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � �1

2
66664

3
77775þ

�csB1

1þ �csB2

1þ � � � �csBN

1þ

�csB1

2þ �csB2

2þ � � � �csBN

2þ

..

. ..
. . .

. ..
.

�csB1

Nþ �csB2

Nþ � � � �csBN

Nþ

2
6666664

3
7777775, (35)

where cs
Bm
nþ ¼ ðr0=2Þðe

igþm;nz=Gm;nÞQ
Bm
nþ, and

pA ¼ �A1;�A2; . . . ;�ANf gT
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N

vA ¼ �
g�m;1A1

oþUg�m;1
;�

g�m;2A2

oþUg�m;2
; . . . ;�

g�m;nAN

oþUg�m;n

( )T
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N

. (36)

And fss1BgN�N represents a matrix related to the sound wave pB defined in Eq. (27). Therefore, for each section,
the corresponding matrix can be described as

ss1B ss1C

ss2B ss2C

ss3B ss3C

ss4B ss4C

8>>>><
>>>>:

9>>>>=
>>>>;

4n�2n

. (37)

Up to now, we have derived the solution in a finite domain with the unknown variables on the interfaces.
For simplicity, the solution consisting of Eqs. (3), (5) and (24) and the corresponding matrix expression
defined in Eq. (37) is called as a ‘‘transfer element’’. More importantly, later on we will see that the solution for
non-locally reacting liner can also be expressed as a transfer element, which just remains as the unknown
interface parameters. This actually means that for a duct with arbitrary combinations of locally and non-
locally reacting liners, its solution of acoustic field can be obtained by the following two steps, firstly dividing
the duct into various duct elements with different acoustic treatment configuration as shown in Fig. 2, and
then establishing the relation between the transfer elements by imposing suitable conditions on the interface of
each element. Compared to the mode-matching method [24], the transfer element we constructed need not
require calculating the difficult complex eigenvalues and also need not assume that the wall impedance is
piecewise uniform. Furthermore, the eigenfunctions still satisfy orthogonality, which means there is good
convergence theoretically. With some combination of different elements, we can carry out various optimizing
design for a better sound attenuation in a lined duct. For convenience in the following discussion, we call what
is suggested in this investigation as ‘‘transfer element method’’ (shorten by TEM). In fact, it will be
Fig. 2. Geometry of a finite duct with nd transfer elements.
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demonstrated that by combining TEM with BIEM, sound radiation from a finite length duct can be calculated
no matter what kind of liner is distributed on the duct.

2.2. Basic solution for a finite domain in ducts with non-locally reacting liner

The geometry of non-locally reacting liner is showed in Fig. 3. As stated earlier, this kind of perforated
liner has been receiving great attention mainly due to its potential for various practical applications [12–22]. In
Fig. 3, pi, pd

�, and pd
+ denote incident acoustic pressure, disturbance acoustic pressure in duct and

disturbance acoustic pressure in cavity, respectively. For the cavity, its Green’s function can be expressed as

G0 ¼ �
1

2p

X1
m¼�1

X1
n¼1

X1
q¼0

Fm;nðx; yÞ cosðqpz=lÞF�m;nðx
0; y0Þ cosðqpz0=lÞ

Gm;n;q

Z 1
�1

eioðt�tÞ

k2
0 � k2

m;n;q

do; (38)

where

k2
m;n;q ¼ k2

m;n þ
qp
l

� 	2
, (39)

Gm;n;q ¼

Z l

0

Z
A0
Fmðx; yÞF�nðx

0; y0Þ cos
qpz

l
cos

qpz

l
dSð~r0Þdz ¼

Gm;n
l
2

qa0;

Gm;nl q ¼ 0:

(
(40)

We thus obtain

pþd ¼ ir0o
X

m

X
n

X
q

Fm;nðx; yÞ cosðqpz=lÞ

Gm;n;qðk
2
0 � k2

m;n;qÞ

Z
sðtÞ

V nF�m;nðx
0; y0Þ cos

qpz0

l
dSð~r0Þ. (41)

It is noted that pd
� has the same expression as defined in Eq. (11). As Fig. 3 shows, the acoustic properties of

a perforated screen can be described as the compliance related to the Rayleigh conductivity c of a single
aperture in a rigid baffle [13–15]. Hughes and Dowling [14] adopted the Rayleigh conductivity of a single
aperture in a plane proposed by Howe [13] to construct a smooth compliance for a perforated screen with bias
flow. The same procedure will be used in the present study. Due to the boundary condition on the surface of
liner, we have

p�d � pþd þ
ior0Q

c
¼ �pi, (42)

i.e.

p�d � pþd þ
ior0Vn

Z
¼ �pi, (43)

where Q denotes the fluctuating aperture volume flux and Z is related to Ref. [21]

1

Z
¼

pa2

s
1

Ka

þ
ht

s
, (44)
Fig. 3. Geometry of a non-locally reacting liner.
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where ht is the liner thickness and

s � pa2=d2;Ka ¼ 2aðgþ idÞ, (45)

where g and d are given by Eq. (3.14) of Ref. [13]. Like Eq. (20), the relevant algebraic equations can be
written as X

k

z�jk � zþjk þ djk

ior0
Z

� �
Vk ¼ �I j, (46)

where

zþjk ¼
2ir0o

l

X
m

X
n

X
q

Fm;nðx; yÞ

Gm;n;qðk
2
0 � k2

m;n;qÞZ l

0

cos
qpz

l

Z
sðtÞ

F�m;nðx
0; y0Þ cos

qpz0

l
sin

kpz0

l
dSð~r0Þ sin

jpz

l
dz, (47)

z�jk ¼ zjk. (48)

The same procedure as shown in Eq. (20) for a locally reacting liner can be used to solve Eq. (47), i.e., the
effect of non-locally reacting liner can also be considered in the present model.

2.3. Sound radiation from a finite duct

To predict sound radiation of a finite duct with uniform cross-section, as Fig. 4 shows, a boundary integral
equation method (BIEM) is applied instead of using the mode reflection coefficients defined in Refs. [27,28].
Based on potential theory, the sound radiation of the duct can be obtained by using Eq. (49) when the
boundary conditions p(Q), qp(Q)/qn on the exterior surface are known

CðPÞpðPÞ ¼

Z
S

p Qð Þ
qGðP;QÞ

qn
�

qpðQÞ

qn
GðP;QÞ


 �
dSðQÞ; (49)

here P, Q are points on the surface S, n is outwards normal direction at a point on the surface, p is the surface
pressure. The function G is the free-space Green’s function GðP;QÞ ¼ exp ð�ik0RÞ=4pR, where R ¼ jrp � rqj.
Depending on the position of P, the value of C(P) is given by

CðPÞ ¼ 1þ

Z
S

q
qnq

1

4pR


 �
dSðQÞ. (50)
Fig. 4. Geometry of duct and observation point.
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Obviously we have

CðpÞ ¼ 0 for P in duct,

CðpÞ ¼ 1 for P out of duct,

CðpÞ ¼ 0:5 for P on a smooth surface of duct. (51)

Considering properties of the axisymmetric duct, and using the expansion of the boundary conditions and
the surface distribution functions in Fourier series with respect to the angle of revolution, the surface integral
of Eq. (49) is reduced to a line integral along the generator of the duct [29–31]. As suggested in Ref. [31], the
evaluation of Eq. (49) can be performed numerically by discretizing the generator of the duct into a series of
curvilinear isoparametric elements. As Fig. 5 shows, there are 2M1+M2 nodes along the generator. Each
element has 3 nodes, i.e. (2M1+M2�3)/2 elements here. Discretizing boundary integral Eq. (49), 2M1+M2

algebraic equations can be obtained

cðPjÞpmj �
XNe

n¼1

X3
a¼1

pmnaAa
mnj þ

XNe

n¼1

X3
a¼1

pn
mnaCa

mnj ¼ 0

j ¼ 1; 2; 3; . . . ; 2M1 þM2; Ne ¼ 2M1 þM2 � 3. (52)

Here, the method mentioned in Ref. [31] is used to obtain the correlative coefficients matrixes Aa
mnj ;C

a
mnj . m

denote the circumferential modes of the sound sources, pmna and pn
mna are the values of p, qp/qn at the ath node

of nth element. Obviously, there are 4M1+2M2 unknowns in Eq. (52). Because the exterior surface of the duct
is assumed to be solid, the values of qp/qn there must satisfy the boundary condition qp/qn ¼ 0. Then
4M1+M2 unknowns remain in Eq. (52). To obtain the values of these unknowns, the other 2M1 equations
need to be constructed.

It should be noted that Eq. (49) is based on Eq. (2), assuming the source term að~r0; tÞ ¼ 0. When there is only
z-axis uniform flow, and express the sound pressure as p ¼ pðx; y; zÞeiot, we can rewrite Eq. (2) as

q2p

qx2
þ

q2p
qy2
þ ð1�M2Þ

q2p
qz2
� 2

ioM

c0

qp

qz
þ k2

0 p ¼ 0. (53)

Letting pðx; y; zÞ ¼ Cðx; y; zÞ eik
0
0Mz; k00 ¼ k0=b; z ¼ bz, Eq. (53) will be rearranged as

q2C
qx2
þ

q2C
qy2
þ

q2C

qz2
þ k0

2
0C ¼ 0. (54)

Eq. (54) is a Helmholtz equation. It can be solved by Eq. (52) to get the values of C, qC/qz. Then the values
of p, qp/qn can be obtained as follows:

qp

qn
¼

qp

qz
¼

eik
0
0Mz

b
ðCn þ ik00MCÞ for Q on Rduct section; (55)

qp

qn
¼ �

qp

qz
¼

eik
0
0Mz

b
ð�Cn þ ik0MCÞ; for Q on Lduct section: (56)
Fig. 5. Typical discretization scheme of the generator of a duct.
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It is well known that if the duct is zero thickness, there is a singularity at the leading edge of the duct. To
avoid this problem, we assume the duct has a finite thickness hd, and hd5r1. In spite of this, as an
approximation treatment, we still regard the flow both inside and outside the duct as uniform flow. In
addition, the Kutta condition is imposed on the trailing edge of the duct during discretizing the equation.

In the present model, the incident sound is produced by a collection of Ms points or line monopoles and/or
dipoles. The duct has nd sections, i.e. nd+1 cross-sections, as shown Fig. 2, and the interior surface of each
section has different boundary conditions. The sound sources are assumed to be located in the jth section. The
sound pressure field can be described by

p
j
i ¼

XN

n¼1

p
j
infmðkm;nrÞ eig

�
m;nz, (57)

p
j
B ¼

XN

n¼1

Bj
nfmðkm;nrÞ eig

�
m;nz, (58)

p
j
C ¼

XN

n¼1

Cj
nfmðkm;nrÞ eig

þ
m;nðz�ljÞ, (59)

p
j
d ¼

r0
2

XN

n¼1

fmðkm;nrÞeig
�
m;nz

Gm;n

XN

m¼1

Bj
mQ

Bm
n� þ Cj

mQ
Cm
n�

h i( )
, (60)

where superscript j denotes the number of the section. N denotes how many radial modes are considered.
fm(km,nr) is the eigenfunction. For a circular duct, fm(km,nr) should be the first kind Bessel function Jm(km,nr),
where km,n is the eigenvalue which is given by J 0mðkm;nrÞ ¼ 0. Letting N ¼M1, from Eqs. (52) and (57)–(60), we
know that, (4+2nd) M1+M2 unknowns have to be determined to describe the whole sound field. Based on
TEM, the algebraic equations can be obtained

ss2�Bp
ss2�Cp

ss2þBp
ss2þCp
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(61)

The known quantities on the right side are relative to incident waves. Superscript of ss2�Bp
denotes on the left

side of S2. As mentioned above, 2M1+M2 and 2(nd�1)M1 algebraic equations have been obtained by using
BIEM and TEM, respectively. Based on the p and qp/qn continuity conditions on the inlet and outlet cross-
section, 4M1 can be constructed

BB1�
p AA1þ

Bp AA1þ
Cp

BB1�
pn AA1þ

Bpn AA1þ
Cpn

AA
ðndþ1Þ�
Bp AA

ðndþ1Þ�
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p
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8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

4M1�6M1

¼

pp1þ
ip

pp1þ
ipn
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8>>>>>><
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4M1�1

, (62)
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where subscript p, pn denote that the matrix is relative to p or qp/qn, respectively. Matrix BB and CC are
concerning the values of p and qp/qn of each nodes on the radius. They are defined byZ r0

0

pfmðkm;nrÞrdr, (63)

Z r0

0

qp

qn
fmðkm;nrÞrdr. (64)

Solving the simultaneous linear equations composed of Eqs. (52), (61) and (62), the (4+2nd)M1+M2

unknowns will be determined, i.e. the sound boundary condition of the duct can be obtained. It is therefore
concluded that the sound radiation from a finite duct can be determined by combining TEM with BIEM,
especially including the effect of both locally and non-locally reacting liners.

3. Results and discussions

3.1. Numerical results for a finite length treatment in an infinitely long duct

As a check to the present model, we first need to judge if the solution of a single transfer element described
by Eqs. (3), (5), (24) and (37) is correct or not. For this purpose, consider a plane wave coming from �N,
which propagates between the two infinite parallel walls. To study how the wave interacts with a finite length
liner from z ¼ 0 to l shown in Fig. 1, we have two ways to realize the goal. The one way is to let the incident
wave directly satisfy the boundary condition on the source surface to obtain the results by solving the
corresponding integral equation just like Namba and Fukushige [25] did. The other way is to let the incident
wave meet the matching conditions on the interface (z ¼ 0 or l) described in the present model to obtain the
results. For this case, the eigenfunction is

Fn ¼
ffiffiffiffi
�n
p

cosðknxÞ, (65)

where x ¼ h ¼ 1m is the height of the parallel duct and

kn ¼
np
h
; �n ¼

1 n ¼ 0;

2 na0:

(
(66)

In addition, the length of liner is l ¼ 4.339m and the mean flow is M ¼ 0. The impedance is given by

Z ¼ Rþ i
Ro
o0
� cot

od

c0

� �
 �
, (67)

where R ¼ 1.4, o0 ¼ 25.57c0, d ¼ 0.271m. The liner is only placed on the surface of x ¼ 0. In addition, the
sound attenuation shown in Fig. 6 represents the insertion loss between the inlet and outlet planes of the
incident wave. From this figure, we see that the results from two different ways agree with each other very well
for most of the frequency range. However, there is some derivation for higher non-dimensional frequencies
(4–5). As for the present results, we found that the model can provide good convergent results even for higher
frequency case. Therefore, the minor deviation in Fig. 6 may come from different methods of solving the
integral equation.

The second example is about a two-section locally reacting liner in axial series combination. In this case,
Mach number of the mean flow is M ¼ 0.4. As shown in Fig. 7, the liner is composed of two sections, and l1/
l ¼ 0.5, R1 ¼ 0.8, R2 ¼ 0.6, o01 ¼ o02 ¼ 25.86c0. Fig. 7 reveals that TEM gives the same results as those
published in Ref. [25].

The third example is about a non-locally reacting liner. The comparison is made between our results and
those from recent study conducted by Eldredge [22]. The latter was obtained by using Green’s function
method and boundary value theory of differential equations. Fig. 8 is the schematic related to the
computation, and we still use the sound absorption coefficient defined in Ref. [21]. As seen in Fig. 9, the results
of TEM agree well with the findings from Eldredge’s model for both plane incident wave and higher order
mode wave.
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o01 ¼ o02 ¼ 25.86c0.
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It is concluded from the above three examples that TEM can provide that same results as the existing
methods for both locally and non-locally reacting liner by only using the interface matching conditions instead
of directly satisfying the boundary condition in the lined surface [12,25]. More importantly, if combining TEM
with BIEM, we can see that it is possible to compute the sound radiation from a finite length duct containing
arbitrary combinations of both locally and non-locally reacting liners.

3.2. Numerical results from a finite duct with various sound sources

For this case, we first make a comparison with Myers’ results [34]. A finite duct shown in Fig. 4 is considered
here, where O denotes the origin. The length of the duct is L, L1, L2 represent the length of liner, respectively.
Radius of the duct is r0. The observation point is on the sphere defined by Robs. A time periodic, distributed
but very narrow spherical source is located at O. L1 ¼ L2 ¼ 0, i.e. all the interior surface of the duct is hard
wall. In Ref. [34], the sound source is given in free space. For our case, we need to obtain the expression for an
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Fig. 8. Geometry of a annular duct with non-locally reacting liner. L ¼ 1m, r0/L ¼ 0.0282, r1/L ¼ 0.358, r2/r1 ¼ 1.67, s ¼ 0.0398, a/

L ¼ 2.11� 10�3, ht/L ¼ 0.0237, Mh ¼ 0.05, M ¼ 0.
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Fig. 9. Absorption of different modes by single non-locally reacting liner.

X. Sun et al. / Journal of Sound and Vibration 316 (2008) 50–6864
infinitely long duct. By using the generalized Green’s function method [33], the sources in the duct can be
described as

p0i ¼
Ar0e

iot

2

X1
n¼1

½oþUg�m;n�
Fðkm;nrÞ

Gm;n

eig
�
m;nz

kn;m
. (68)
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As seen in Fig. 10, there is little difference between the two results for both the acoustic directivity and the
corresponding amplitude almost at all observation points.

For a rotating source, consider that 20 spinning axial dipoles, situated on a disk in the middle
of a short duct, generate the twentieth circumferential mode of acoustic pressure and its harmonics [2,35].
The acoustic field generated by the spinning point axial dipoles sources in our computational model is
rewritten as

p0i ¼
BT eisBOt

2

X1
m¼�1

X1
n¼1

Fðkm;nrÞFðkm;nrsÞ

Gm;n

g�m;n
kn;m

eig
�
m;nz, (69)

where B denotes the number of blades and also represents the number of dipoles in our computation. The disk
is located at the center of the duct. The observation point is located on sphere Robs ¼ 10m. The result in
Fig. 11 is obtained when the duct has solid interior surface. The results of the present method are in a relatively
good agreement with those reported in Ref. [35].

Fig. 12 shows the results including the effect of two-section locally reacting liners. As seen in Fig. 12,
compared with the results from Ref. [35], the present predictions have almost the same directivity at any
observation point but there are certain discrepancies for the amplitude in the inlet of the duct.

The reason for the discrepancies observed in Figs. 10–12 may be explained by the following two aspects,
the one is that these results come from different computational methods; and the second is that in
order to avoid the leading edge singularity we assume that the duct has a finite thickness instead of being an
infinitely thin, which may affect both directivity and amplitude of the sound radiation to a certain extent.
Anyway, the results of Figs. 10–12 have in fact demonstrated that TEM and BIEM can be combined to solve
the sound scattering problem of a finite lined duct containing rotating sound sources within acceptable
accuracy limits.
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Fig. 10. Sound pressure level at spherical radius 2.5m; L ¼ 2 r0 ¼ 1m, M ¼ 0.5, or0/c0 ¼ 2.2045p, r0c0A ¼ 1.
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Fig. 11. Sound pressure level at spherical radius 2.5m; M ¼ �0.4, T ¼ 1.0 kN, or0/c0 ¼ 1.22, L ¼ r0 ¼ 1.0m, rs/r0 ¼ 0.9, L1 ¼ L2 ¼ 0.
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Fig. 12. Sound pressure level at spherical radius 10m; M ¼ �0.4, T ¼ 1.0 kN, or0/c0 ¼ 1.22, L ¼ r0 ¼ 1.0m, rs/r0 ¼ 0.9, L1 ¼ L2 ¼ 0,

Z1 ¼ 2+0i, Z2 ¼ 0.5+0.5i.
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Fig. 13. Sound pressure level at spherical radius 10m; M ¼ �0.4, T ¼ 1.0 kN, or0/c0 ¼ 1.22, L ¼ r0 ¼ 1.0m, rs/r0 ¼ 0.9, L1 ¼ L2 ¼ 0.4m;
J, hard surface; —, locally reacting liner: Z1 ¼ Z2 ¼ (1.0, 1.5); K, non-locally reacting liner; r1 ¼ 1.2m, ht ¼ 0.001m, s ¼ 0.02,

a ¼ 0.001, Mh ¼ 0.023.
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3.3. Effect of non-locally reacting liners

As mentioned above, the present method can be used to calculate the sound radiation from a finite length
duct containing arbitrary combinations of both locally and non-locally reacting liners. Fig. 13 is an example
for this case. If replacing the locally reacting liner given in Ref. [35] with a non-locally reacting liner having the
same length, and giving the input parameters for this liner as shown in Fig. 13, we can first predict the
compliance of the screen according to Eqs. (44) and (45), and then the corresponding acoustic fields can be
computed. It is found from Fig. 13 that the radiating sound pressure of the duct is decreased effectively in this
case compared with the results from the locally reacting liner. However, this does not mean that any non-
locally reacting liner has certainly better performance than a locally reacting one if not carefully designing the
relevant parameters. Fig. 14 is a schematic of a combination of locally and non-locally reacting liners with the
same treatment length. From Fig. 15, it is found that if taking the bias flow Mh ¼ 0.005, the corresponding
sound attenuation represented by hollow circles in Fig. 15 is not as good as that from the pure locally
reacting liner at most of the observation points. However, if letting bias flow Mh ¼ 0.05, the solid circles
shown in Fig. 15 stand for the computing results and the attenuation is much better than those from the
above two cases. In fact, it has long been known that the properties of a non-locally reacting liner can be
altered by adjusting the speed of the bias flow. The reason is the change of resistance and reactance
of the perforated plate due to the vortex–sound interaction [14]. However, the computational results
given in Fig. 15 also show that a better sound attenuation in a duct may be realized as long as we carefully
design the non-locally reacting liner, including the introduction of suitable amount of bias flow. On the other
hand, for a different sound source, it is also possible that the corresponding speed of bias flow could be
introduced to actively suppress the noise on the basis of our suggestions. It is thus believed that our method
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Fig. 14. Sketch of segmented liners.
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Fig. 15. Sound pressure level at spherical radius 10m; M ¼ �0.4, T ¼ 1.0 kN, or0/c0 ¼ 1.22, L ¼ r0 ¼ 1.0m, rs/r0 ¼ 0.9, L1 ¼ L2 ¼ 0.4m,

Z1 ¼ (2.0, 0) ——, local: L2 ¼ 0.4m, Z2 ¼ (0.5, 0.5); J, non-local: L2 ¼ 0.4m, r1 ¼ 1.1m, ht ¼ 0.001m, s ¼ 0.02, a ¼ 0.001, Mh ¼ 0.005;

K, non-local: L2 ¼ 0.4m, r1 ¼ 1.1m, ht ¼ 0.001m, s ¼ 0.02, a ¼ 0.001, Mh ¼ 0.05.
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may lead to a more appropriate tool for the acoustic liner optimization than a usual procedure due to more
design degrees of freedom.

4. Conclusions

It is noted that a non-locally reacting liner with adjustable wall impedance may play some role in future
techniques related to hybrid active/passive control of aeroengine noise. However, there are few models
available to include the effect of non-locally reacting liner on the prediction of sound radiation from a finite
duct in current literatures. This paper presents a unified model to study the effect of both locally and
non-locally reacting liners on the acoustic fields generated by fan blade rotating sources. Various numerical
experiments show that this model can not only give a good agreement with existing results for locally reacting
liner but also has a capability to predict the sound radiation from fan rotating blade sources with an arbitrary
combination of locally and non-locally reacting liners, which indeed provides more choices for the preliminary
parameter design of optimum liner.
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